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Abstract

This memo discusses a proposed extension to the Internet architecture and protocols to

provide integrated services, i.e., to support real-time as well as the current non-real-time

service of IP. This extension is necessary to meet the growing need for real-time service

for multimedia applications.

This memo represents the direct product of recent work by Dave Clark, John Wro-

clawski, Scott Shenker, Lixia Zhang, Sugih Jamin, Deborah Estrin, Bob Braden, and

Shai Herzog, and indirectly draws upon the work of many others.

1 Introduction

The multicasts of IETF meetings across the Internet have formed a large-scale experiment in

sending digitized voice and video through a packet-switched infrastructure. These highly-visible

experiments have depended upon three enabling technologies. (1) Many modern workstations

now come equipped with built-in multimedia hardware, including audio codecs and video frame-

grabbers, and the necessary video gear is now inexpensive. (2) IP multicasting, which is not yet
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generally available in commercial routers, is being provided by the MBONE, a temporary \multicast

backbone". (3) Highly-sophisticated digital audio and video applications have been developed.

These experiments also showed that an important technical element is still missing: real-time

applications often do not work well across the Internet because of variable queueing delays and

congestion losses. The Internet, as originally conceived, o�ers only a very simple quality of ser-

vice (QoS), point-to-point best-e�ort data delivery. Before real-time applications such as remote

video, multimedia conferencing, visualization, and virtual reality can be broadly used, the Internet

infrastructure must be modi�ed to support real-time QoS, which provides some control over end-

to-end packet delays. This extension must be designed from the beginning for multicasting; simply

generalizing from the unicast (point-to-point) case does not work.

Real-time QoS is not the only issue for a next generation of tra�c management in the Internet.

Network operators are requesting the ability to control the sharing of bandwidth on a particular

link among di�erent tra�c classes. They want to be able to divide tra�c into a few administrative

classes and assign to each a minimum percentage of the link bandwidth under conditions of overload,

while allowing "unused" bandwidth to be available at other times. These classes may represent

di�erent user groups or di�erent protocol families, for example. Such a management facility is called

controlled link-sharing. We use the term integrated services (IS) for an Internet service model that

includes best-e�ort service, real-time service, and controlled link sharing.

The requirements and mechanisms for integrated services have been the subjects of much discussion

and research over the past several years (the literature is much too large to list even a representative

sample here; see the references in [CSZ92, Floyd92, Jacobson91, JSCZ93, Partridge92, SCZ93,

RSVP93a] for a partial list). This work has led to the uni�ed approach to integrated services

support that is described in this memo. We believe that it is now time to begin the engineering

that must precede deployment of integrated services in the Internet.

Section 2 of this memo introduces the elements of an IS extension of the Internet. Section 3 discusses

real-time service models [SCZ93a, SCZ93b]. Section 4 discusses tra�c control, the forwarding

algorithms to be used in routers [CSZ92]. Section 5 discusses the design of RSVP, a resource setup

protocol compatible with the assumptions of our IS model [RSVP93a, RSVP93b].

2 ELEMENTS OF THE ARCHITECTURE

The fundamental service model of the Internet, as embodied in the best-e�ort delivery service of IP,

has been unchanged since the beginning of the Internet research project 20 years ago [CerfKahn74].

We are now proposing to alter that model to encompass IS. From an academic viewpoint, changing

the service model of the Internet is a major undertaking; however, its impact is mitigated by the

fact that we wish only to extend the original architecture. The new components and mechanisms

to be added will supplement but not replace the basic underlying IP services of the past.
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Abstractly, the proposed architectural extension is comprised of two elements: (1) an extended

service model, which we call the IS model, and (2) a reference implementation framework, which

gives us a set of vocabulary and a generic program organization to realize the IS model. It is

important to separate the service model, which de�nes the externally visible behavior, from the

discussion of the implementation, which may (and should) change during the life of the service

model. However, the two are related; to make the service model credible, it is useful to provide an

example of how it might be realized.

2.1 Integrated Services Model

The IS model we are proposing includes two sorts of service targeted towards real-time tra�c:

guaranteed and predictive service. It integrates these services with controlled link-sharing, and it

is designed to work well with multicast as well as unicast. Deferring a summary of the IS model to

Section 3, we �rst discuss some key assumptions behind the model.

The �rst assumption is that resources (e.g. bandwidth) must be explicitly managed in order to

meet application requirements. This implies that resource reservation and admission control are

key building blocks of the service. An alternative approach, which we reject, is to attempt to

support real time without any explicit changes to the Internet service model.

The essence of real-time service is the requirement for some service guarantees, and we argue that

guarantees cannot be achieved without reservations. The term \guarantee" here is to be broadly

interpreted; they may be absolute or statistical, strict or approximate. However, the user must

be able to get a service whose quality is su�ciently predictable that the application can operate

in an acceptable way over a duration of time determined by the user. Again, \su�ciently" and

\acceptable" are vague terms. In general, stricter guarantees have a higher cost in resources that

are made unavailable for sharing with others.

The following arguments have been raised against resource guarantees in the Internet.

� \Bandwidth will be in�nite."

The incredibly large carrying capacity of an optical �ber leads some to conclude that in the

future bandwidth will be so abundant, ubiquitous, and cheap that there will be no commu-

nication delays other than the speed of light, and therefore there will be no need to reserve

resources. However, we believe that this will be impossible in the short term and unlikely

in the medium term. While raw bandwidth may seem inexpensive, bandwidth provided as a

network service is not likely to become so cheap that wasting it will be the most cost-e�ective

design principle. Even if low-cost bandwidth does eventually become commonly available, we

do not accept that it will be available everywhere in the Internet. Unless we provide for the

possibility of dealing with congested links, then real-time services will simply be precluded in

those cases. We �nd that restriction unacceptable.
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� \Simple priority is su�cient."

It is true that simply giving higher priority to real-time tra�c would lead to adequate real-

time service at some times and under some conditions. But priority is an implementation

mechanism, not a service model. If we de�ne the service by means of a speci�c mechanism,

we may not get the exact features we want. In the case of simple priority, the issue is that as

soon as there are too many real-time streams competing for the higher priority, every stream

is degraded. Restricting our service to this single failure mode is unacceptable. In some

cases, users will demand that some streams succeed while some new requests receive a \busy

signal".

� \Applications can adapt."

The development of adaptive real-time applications, such as Jacobson's audio program VAT,

does not eliminate the need to bound packet delivery time. Human requirements for inter-

action and intelligibility limit the possible range of adaptation to network delays. We have

seen in real experiments that, while VAT can adapt to network delays of many seconds, the

users �nd that interaction is impossible in these cases.

We conclude that the requirement for resource reservation is inescapable. Resource reservation in

turn requires adding ow-speci�c control state in the routers, which represents an important and

fundamental change to the Internet model. The Internet architecture was been founded on the

concept that all ow-related state should be in the end systems [Clark88]. Designing the TCP/IP

protocol suite on this concept led to a robustness that is one of the keys to its success. In section

5 we discuss how the ow state added to the routers for resource reservation can be made `soft', to

preserve the robustness of the Internet protocol suite.

We make another fundamental assumption, that it is desirable to use the Internet as a common

infrastructure to support both non-real-time and real-time communication. One could alternatively

build an entirely new, parallel infrastructure for real-time services, leaving the Internet unchanged.

We reject this approach, as it would lose the signi�cant advantages of statistical sharing between

real-time and non-real-time tra�c, and it would be much more complex to build and administer

than a common infrastructure.

In addition to this assumption of common infrastructure, we adopt a uni�ed protocol stack model,

employing a single internet-layer protocol for both real-time and non-real-time service. Thus, we

propose to use the existing internet-layer protocol (e.g., IP or CLNP) for real-time data. Another

approach would be to add a new real-time protocol in the internet layer [ST2-90]. Our uni�ed stack

approach provides economy of mechanism, and it allows us to fold controlled link-sharing in easily.

It also handles the problem of partial coverage, i.e., allowing interoperation between IS-capable

Internet systems and systems that have not been extended, without the complexity of tunneling.

We take the view that there should be a single service model for the Internet. If there were di�er-

ent service models in di�erent parts of the Internet, it is very di�cult to see how any end-to-end
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service quality statements could be made. However, a single service model does not necessarily

imply a single implementation for packet scheduling or admission control. Although speci�c packet

scheduling and admission control mechanisms that satisfy our service model have been developed,

it is quite possible that other mechanisms will also satisfy the service model. The reference imple-

mentation framework, introduced below, is intended to allow discussion of implementation issues

without mandating a single design.

Based upon these considerations, we believe that an integrated services extension that includes

additional ow state in routers and an explicit setup mechanism is necessary to provide the needed

service. A partial solution short of this point would not be a wise investment. We believe that

the extensions we propose preserve the essential robustness and e�ciency of the Internet architec-

ture, and they allow e�cient management of the resources; these will be important goals even if

bandwidth becomes very inexpensive.

2.2 Reference Implementation Framework

We propose a reference implementation framework to realize the IS model. This framework in-

cludes four components: the packet scheduler, the admission control routine, the classi�er, and the

reservation setup protocol. These are discussed briey below and more fully in Sections 4 and 5.

In the ensuing discussion, we de�ne the "ow" abstraction as a distinguishable stream of related

datagrams that results from a single user activity and requires the same QoS. For example, a ow

might consist of one transport connection or one video stream between a given host pair. It is the

�nest granularity of packet stream distinguishable by the IS. We de�ne a ow to be simplex, i.e.,

to have a single source but N destinations. Thus, an N-way teleconference will generally require N

ows, one originating at each site.

In today's Internet, IP forwarding is completely egalitarian; all packets receive the same quality of

service, and packets are typically forwarded using a strict FIFO queueing discipline. For integrated

services, a router must implement an appropriate QoS for each ow, in accordance with the service

model. The router function that creates di�erent qualities of service is called \tra�c control".

Tra�c control in turn is implemented by three components: the packet scheduler, the classi�er,

and admission control.

� Packet Scheduler

The packet scheduler manages the forwarding of di�erent packet streams using a set of queues

and perhaps other mechanisms like timers. The packet scheduler must be implemented at

the point where packets are queued; this is the output driver level of a typical operating

system, and corresponds to the link layer protocol. The details of the scheduling algorithm

may be speci�c to the particular output medium. For example, the output driver will need
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to invoke the appropriate link-layer controls when interfacing to a network technology that

has an internal bandwidth allocation mechanism.

We have built a packet scheduler to implement the IS model described in Section 3 and

[SCZ93]; this is known as the CSZ scheduler and is discussed further in Section 4. We note

that the CSZ scheme is not mandatory to accomplish our service model; indeed for parts of

the network that are known always to be underloaded, FIFO will deliver satisfactory service.

There is another component that could be considered part of the packet scheduler or separate:

the estimator [Jacobson91]. This algorithm is applied to measure properties of the outgoing

tra�c stream, to develop statistics that control packet scheduling and admission control. This

memo will consider the estimator to be a part of the packet scheduler.

� Classi�er

For the purpose of tra�c control (and accounting), each incoming packet must be mapped into

some class; all packets in the same class get the same treatment from the packet scheduler.

This mapping is performed by the classi�er. Choice of a class may be based upon the contents

of the existing packet header(s) and/or some additional classi�cation number added to each

packet.

A class might correspond to a broad category of ows, e.g., all video ows or all ows at-

tributable to a particular organization. On the other hand, a class might hold only a single

ow. A class is an abstraction that may be local to a particular router; the same packet

may be classi�ed di�erently by di�erent routers along the path. For example, backbone

routers may choose to map many ows into a few aggregated classes, while routers nearer the

periphery, where there is much less aggregation, may use a separate class for each ow.

� Admission Control

Admission control implements the decision algorithm that a router or host uses to determine

whether a requested service increment can be granted without impacting the earlier guar-

antees. The admission control algorithm must be consistent with the service model, and it

is logically part of tra�c control. Although there are still open research issues in admission

control, a �rst cut exists [JCSZ92].

Admission control makes its decision at each node, at the time a host requests a real-time

service along some path through the Internet. Admission control is sometimes confused with

policing or enforcement, which is a packet-by-packet function at the \edge" of the network to

ensure that a host does not violate its promised tra�c characteristics. We consider policing

to be one of the functions of the packet scheduler.

In addition to ensuring that QoS guarantees are met, admission control will be concerned with

enforcing administrative policies on resource reservations. Some policies will demand authen-

tication of those requesting reservations. Finally, admission control will play an important

role in accounting and administrative reporting.
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It will generally be necessary to have some state speci�c to a ow both in the endpoint hosts and

in routers along the path of that ow. The host and router state required for a ow will be created

and maintained by a reservation setup protocol. It may not be possible to insist that there be only

one reservation protocol in the Internet, but we will argue that multiple protocols for reserving

protocols will cause confusion. We believe that multiple protocols should exist only to support

di�erent modes of reservation.

Section 5 discusses a reservation setup protocol called RSVP (for \ReSerVation Protocol") [RSVP93a,

RSVP93b]. The set-up requirements for the link-sharing protion of the service model are far less

clear. While we expect that much of this can be done through network management interfaces,

and thus need not be part of the overall architecture, we may also need RSVP to play a role in

providing the required state.

Figure 1 shows how these components would �t into an IP router that has been extended to provide

integrated services. The router has two broad functional divisions: the forwarding path below the

double horizontal line, and the background code above the line.

The forwarding path of the router is executed for every packet and must therefore be highly

optimized. Indeed, in most commercial routers, its implementation involves a hardware assist.

The forwarding path is divided into three sections: input driver, internet forwarder, and output

driver. The internet forwarder interprets the internetworking protocol header appropriate to the

protocol suite, e.g., the IP header for TCP/IP, or the CLNP header for OSI. For each packet,

a forwarder executes a suite-dependent classi�er and then passes the packet and its class to the

appropriate output driver. A classi�er must be both general and e�cient. One way to gain e�ciency

may be to use a common mechanism for the classi�er and route lookup.

The output driver implements the packet scheduler. (Layerists will observe that the output driver

now has two distinct sections: the packet scheduler that is largely independent of the detailed

mechanics of the interface, and the actual I/O driver that is only concerned with the grittiness

of the hardware. The estimator lives somewhere in between. We only note this fact, without

suggesting that it be elevated to a principle.).

The background code is simply loaded into router memory and executed by a general-purpose CPU.

These background routines create data structures that control the forwarding path. The routing

agent implements a particular routing protocol and builds a routing database. The reservation

setup agent implements the protocol used to set up resource reservations; see Section 5. If admission

control gives the "OK" for a new request, the appropriate changes are made to the classi�er and

packet scheduler control data to implement the desired QoS. Finally, every router supports an agent

for network management. This agent must be able to modify the classi�er and packet scheduler

databases to set up controlled link-sharing and to set admission control policies.

The implementation framework for a host is generally similar to that for a router, with the addition

of applications. Rather than being forwarded, host data originates and terminates in an application.
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_____________________________________________________________

| ____________ ____________ ___________ |

| | | | Reservation| | | |

| | Routing | | Setup | | Management| |

| | Agent | | Agent | | Agent | |

| |______._____| |______._____| |_____._____| |

| . . | . |

| . . _V________ . |

| . . | Admission| . |

| . . | Control | . |

| V . |__________| . |

| [Routing ] V V |

| [Database] [Traffic Control Database] |

|=============================================================|

| | | _______ |

| | __________ | |_|_|_|_| => o |

| | | | | Packet | _____ |

| ====> |Classifier| =====> Scheduler |===>|_|_|_| ===>

| | |__________| | _______ | |

| | | |_|_|_|_| => o |

| Input | Internet | |

| Driver | Forwarder | O u t p u t D r i v e r |

|________|__________________|_________________________________|

Figure 1: Implementation Reference Model for Routers
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Real-time applications use an API to a local reservation setup agent to request the desired QoS

for a ow. The IP output routine of a host may need no classi�er, since the class assignment for a

packet can be speci�ed in the local I/O control structure corresponding to the ow.

In routers, integrated service will require changes to both the forwarding path and the background

functions. The forwarding path, which may depend upon hardware acceleration for performance,

will be the more di�cult and costly to change. It will be vital to choose a set of tra�c control

mechanisms that is general and adaptable to a wide variety of policy requirements and future

circumstances, and that can be implemented e�ciently.

3 INTEGRATED SERVICES MODEL

A service model is embedded within the network service interface invoked by applications and

de�nes the set of services they can request. While both the underlying network technology and

the overlying suite of applications will evolve, the need for compatibility requires that this service

interface remain relatively stable (or, more properly, extensible; we do expect to add new services

in the future but we also expect that it will be hard to change existing services). Because of its

enduring impact, the service model should not be designed in reference to any speci�c network

artifact but rather should be based on fundamental service requirements.

We now briey describe a proposal for a core set of services for the Internet; this proposed core

service model is more fully described in [SCZ93a, SCZ93b]. This core service model addresses

those services which relate most directly to the time-of-delivery of packets. We leave the remaining

services (such as routing, synchronization, and security) for other standardization venues. A service

model consists of a set of service commitments; in response to a service request the network commits

to deliver some service. These service commitments can be categorized by the entity to whom

they are made: they can be made to either individual ows or to collective entities (classes of

ows). The service commitments made to individual ows are intended to provide reasonable

application performance, and thus are driven by the ergonomic requirements of the applications;

these service commitments relate to the quality of service delivered to an individual ow. The service

commitments made to collective entities are driven by resource-sharing, or economic, requirements;

these service commitments relate to the aggregate resources made available to the various entities.

In this section we start by exploring the service requirements of individual ows and propose a

corresponding set of services. We then discuss the service requirements and services for resource

sharing. Finally, we conclude with some remarks about packet dropping.
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3.1 Quality of Service Requirements

The core service model is concerned almost exclusively with the time-of-delivery of packets. Thus,

per-packet delay is the central quantity about which the network makes quality of service commit-

ments. We make the even more restrictive assumption that the only quantity about which we make

quantitative service commitments are bounds on the maximum and minimum delays.

The degree to which application performance depends on low delay service varies widely, and we can

make several qualitative distinctions between applications based on the degree of their dependence.

One class of applications needs the data in each packet by a certain time and, if the data has not

arrived by then, the data is essentially worthless; we call these real-time applications. Another

class of applications will always wait for data to arrive; we call these elastic applications. We now

consider the delay requirements of these two classes separately.

3.1.1 Real-Time Applications

An important class of such real-time applications, which are the only real-time applications we ex-

plicitly consider in the arguments that follow, are playback applications. In a playback application,

the source takes some signal, packetizes it, and then transmits the packets over the network. The

network inevitably introduces some variation in the delay of the delivered packets. The receiver

depacketizes the data and then attempts to faithfully play back the signal. This is done by bu�er-

ing the incoming data and then replaying the signal at some �xed o�set delay from the original

departure time; the term playback point refers to the point in time which is o�set from the original

departure time by this �xed delay. Any data that arrives before its associated playback point can

be used to reconstruct the signal; data arriving after the playback point is essentially useless in

reconstructing the real-time signal.

In order to choose a reasonable value for the o�set delay, an application needs some a priori

characterization of the maximum delay its packets will experience. This a priori characterization

could either be provided by the network in a quantitative service commitment to a delay bound, or

through the observation of the delays experienced by the previously arrived packets; the application

needs to know what delays to expect, but this expectation need not be constant for the entire

duration of the ow.

The performance of a playback application is measured along two dimensions: latency and �delity.

Some playback applications, in particular those that involve interaction between the two ends of

a connection such as a phone call, are rather sensitive to the latency; other playback applications,

such as transmitting a movie or lecture, are not. Similarly, applications exhibit a wide range

of sensitivity to loss of �delity. We will consider two somewhat arti�cially dichotomous classes:

intolerant applications, which require an absolutely faithful playback, and tolerant applications,

which can tolerate some loss of �delity. We expect that the vast bulk of audio and video applications
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will be tolerant, but we also suspect that there will be other applications, such as circuit emulation,

that are intolerant.

Delay can a�ect the performance of playback applications in two ways. First, the value of the o�set

delay, which is determined by predictions about the future packet delays, determines the latency of

the application. Second, the delays of individual packets can decrease the �delity of the playback

by exceeding the o�set delay; the application then can either change the o�set delay in order to

play back late packets (which introduces distortion) or merely discard late packets (which creates

an incomplete signal). The two di�erent ways of coping with late packets o�er a choice between

an incomplete signal and a distorted one, and the optimal choice will depend on the details of the

application, but the important point is that late packets necessarily decrease �delity.

Intolerant applications must use a �xed o�set delay, since any variation in the o�set delay will

introduce some distortion in the playback. For a given distribution of packet delays, this �xed

o�set delay must be larger than the absolute maximum delay, to avoid the possibility of late

packets. Such an application can only set its o�set delay appropriately if it is given a perfectly

reliable upper bound on the maximum delay of each packet. We call a service characterized by

a perfectly reliable upper bound on delay guaranteed service, and propose this as the appropriate

service model for intolerant playback applications.

In contrast, tolerant applications need not set their o�set delay greater than the absolute maximum

delay, since they can tolerate some late packets. Moreover, instead of using a single �xed value for

the o�set delay, they can attempt to reduce their latency by varying their o�set delays in response

to the actual packet delays experienced in the recent past. We call applications which vary their

o�set delays in this manner adaptive playback applications.

For tolerant applications we propose a service model called predictive service which supplies a

fairly reliable, but not perfectly reliable, delay bound. This bound, in contrast to the bound in

the guaranteed service, is not based on worst case assumptions on the behavior of other ows.

Instead, this bound might be computed with properly conservative predictions about the behavior

of other ows. If the network turns out to be wrong and the bound is violated, the application's

performance will perhaps su�er, but the users are willing to tolerate such interruptions in service

in return for the presumed lower cost of the service. Furthermore, because many of the tolerant

applications are adaptive, we augment the predictive service to also give minimax service, which

is to attempt to minimize the ex post maximum delay. This service is not trying to minimize the

delay of every packet, but rather is trying to pull in the tail of the delay distribution.

It is clear that given a choice, with all other things being equal, an application would perform

no worse with absolutely reliable bounds than with fairly reliable bounds. Why, then, do we

o�er predictive service? The key consideration here is e�ciency; when one relaxes the service

requirements from perfectly to fairly reliable bounds, this increases the level of network utilization

that can be sustained, and thus the price of the predictive service will presumably be lower than
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that of guaranteed service. The predictive service class is motivated by the conjecture that the

performance penalty will be small for tolerant applications but the overall e�ciency gain will be

quite large.

In order to provide a delay bound, the nature of the tra�c from the source must be characterized,

and there must be some admission control algorithm which insures that a requested ow can actually

be accommodated. A fundamental point of our overall architecture is that tra�c characterization

and admission control are necessary for these real-time delay bound services. So far we have

assumed that an application's data generation process is an intrinsic property una�ected by the

network. However, there are likely to be many audio and video applications which can adjust their

coding scheme and thus can alter the resulting data generation process depending on the network

service available. This alteration of the coding scheme will present a tradeo� between �delity (of the

coding scheme itself, not of the playback process) and the bandwidth requirements of the ow. Such

rate-adaptive playback applications have the advantage that they can adjust to the current network

conditions not just by resetting their playback point but also by adjusting the tra�c pattern itself.

For rate-adaptive applications, the tra�c characterizations used in the service commitment are

not immutable. We can thus augment the service model by allowing the network to notify (either

implicitly through packet drops or explicitly through control packets) rate-adaptive applications to

change their tra�c characterization.

3.1.2 Elastic Applications

While real-time applications do not wait for late data to arrive, elastic applications will always wait

for data to arrive. It is not that these applications are insensitive to delay; to the contrary, signi�-

cantly increasing the delay of a packet will often harm the application's performance. Rather, the

key point is that the application typically uses the arriving data immediately, rather than bu�ering

it for some later time, and will always choose to wait for the incoming data rather than proceed

without it. Because arriving data can be used immediately, these applications do not require any

a priori characterization of the service in order for the application to function. Generally speak-

ing, it is likely that for a given distribution of packet delays, the perceived performance of elastic

applications will depend more on the average delay than on the tail of the delay distribution. One

can think of several categories of such elastic applications: interactive burst (Telnet, X, NFS),

interactive bulk transfer (FTP), and asynchronous bulk transfer (electronic mail, FAX). The delay

requirements of these elastic applications vary from rather demanding for interactive burst applica-

tions to rather lax for asynchronous bulk transfer, with interactive bulk transfer being intermediate

between them.

An appropriate service model for elastic applications is to provide as-soon-as-possible, or ASAP

service. (For compatibility with historical usage, we will use the term best-e�ort service when

referring to ASAP service.). We furthermore propose to o�er several classes of best-e�ort service

to reect the relative delay sensitivities of di�erent elastic applications. This service model allows
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interactive burst applications to have lower delays than interactive bulk applications, which in turn

would have lower delays than asynchronous bulk applications. In contrast to the real-time service

models, applications using this service are not subject to admission control.

The taxonomy of applications into tolerant playback, intolerant playback, and elastic is neither

exact nor complete, but was only used to guide the development of the core service model. The

resulting core service model should be judged not on the validity of the underlying taxonomy

but rather on its ability to adequately meet the needs of the entire spectrum of applications. In

particular, not all real-time applications are playback applications; for example, one might imagine

a visualization application which merely displayed the image encoded in each packet whenever it

arrived. However, non-playback applications can still use either the guaranteed or predictive real-

time service model, although these services are not speci�cally tailored to their needs. Similarly,

playback applications cannot be neatly classi�ed as either tolerant or intolerant, but rather fall

along a continuum; o�ering both guaranteed and predictive service allows applications to make

their own tradeo� between �delity, latency, and cost. Despite these obvious de�ciencies in the

taxonomy, we expect that it describes the service requirements of current and future applications

well enough so that our core service model can adequately meet all application needs.

3.2 Resource-Sharing Requirements and Service Models

The last section considered quality of service commitments; these commitments dictate how the

network must allocate its resources among the individual ows. This allocation of resources is

typically negotiated on a ow-by-ow basis as each ow requests admission to the network, and

does not address any of the policy issues that arise when one looks at collections of ows. To

address these collective policy issues, we now discuss resource-sharing service commitments. Recall

that for individual quality of service commitments we focused on delay as the only quantity of

interest. Here, we postulate that the quantity of primary interest in resource-sharing is aggregate

bandwidth on individual links. Thus, this component of the service model, called link-sharing,

addresses the question of how to share the aggregate bandwidth of a link among various collective

entities according to some set of speci�ed shares. There are several examples that are commonly

used to explain the requirement of link-sharing among collective entities.

Multi-entity link-sharing. { A link may be purchased and used jointly by several organizations,

government agencies or the like. They may wish to insure that under overload the link is shared in

a controlled way, perhaps in proportion to the capital investment of each entity. At the same time,

they might wish that when the link is underloaded, any one of the entities could utilize all the idle

bandwidth.

Multi-protocol link-sharing { In a multi-protocol Internet, it may be desired to prevent one protocol

family (DECnet, IP, IPX, OSI, SNA, etc.) from overloading the link and excluding the other

families. This is important because di�erent families may have di�erent methods of detecting and
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responding to congestion, and some methods may be more \aggressive" than others. This could

lead to a situation in which one protocol backs o� more rapidly than another under congestion,

and ends up getting no bandwidth. Explicit control in the router may be required to correct this.

Again, one might expect that this control should apply only under overload, while permitting an

idle link to be used in any proportion.

Multi-service sharing { Within a protocol family such as IP, an administrator might wish to limit

the fraction of bandwidth allocated to various service classes. For example, an administrator might

wish to limit the amount of real-time tra�c to some fraction of the link, to avoid preempting elastic

tra�c such as FTP.

In general terms, the link-sharing service model is to share the aggregate bandwidth according to

some speci�ed shares. We can extend this link-sharing service model to a hierarchical version. For

instance, a link could be divided between a number of organizations, each of which would divide

the resulting allocation among a number of protocols, each of which would be divided among a

number of services. Here, the sharing is de�ned by a tree with shares assigned to each leaf node.

An idealized uid model of instantaneous link-sharing with proportional sharing of excess is the uid

processor sharing model (introduced in [DKS89] and further explored in [Parekh92] and generalized

to the hierarchical case) where at every instant the available bandwidth is shared between the active

entities (i.e., those having packets in the queue) in proportion to the assigned shares of the resource.

This uid model exhibits the desired policy behavior but is, of course, an unrealistic idealization.

We then propose that the actual service model should be to approximate, as closely as possible, the

bandwidth shares produced by this ideal uid model. It is not necessary to require that the speci�c

order of packet departures match those of the uid model since we presume that all detailed per-

packet delay requirements of individual ows are addressed through quality of service commitments

and, furthermore, the satisfaction with the link-sharing service delivered will probably not depend

very sensitively on small deviations from the scheduling implied by the uid link-sharing model.

We previously observed that admission control was necessary to ensure that the real-time service

commitments could be met. Similarly, admission control will again be necessary to ensure that the

link-sharing commitments can be met. For each entity, admission control must keep the cumulative

guaranteed and predictive tra�c from exceeding the assigned link-share.

3.3 Packet Dropping

So far, we have implicitly assumed that all packets within a ow were equally important. However,

in many audio and video streams, some packets are more valuable than others. We therefore propose

augmenting the service model with a preemptable packet service, whereby some of the packets within

a ow could be marked as preemptable. When the network was in danger of not meeting some of

its quantitative service commitments, it could exercise a certain packet's \preemptability option"
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and discard the packet (not merely delay it, since that would introduce out-of-order problems). By

discarding these preemptable packets, a router can reduce the delays of the not-preempted packets.

Furthermore, one can de�ne a class of packets that is not subject to admission control. In the

scenario described above where preemptable packets are dropped only when quantitative service

commitments are in danger of being violated, the expectation is that preemptable packets will

almost always be delivered and thus they must included in the tra�c description used in admission

control. However, we can extend preemptability to the extreme case of expendable packets (the

term expendable is used to connote an extreme degree of preemptability), where the expectation

is that many of these expendable packets will not be delivered. One can then exclude expendable

packets from the tra�c description used in admission control; i.e., the packets are not considered

part of the ow from the perspective of admission control, since there is no commitment that they

will be delivered.

3.4 Usage Feedback

Another important issue in the service is the model for usage feedback, also known as \accounting",

to prevent abuse of network resources. The link-sharing service described earlier can be used to

provide administratively-imposed limits on usage. However, a more free-market model of network

access will require back-pressure on users for the network resources they reserve. This is a highly

contentious issue, and we are not prepared to say more about it at this time.

4 TRAFFIC CONTROL

We �rst survey very briey the possible tra�c control mechanisms. Then in section 4.2 we apply

a subset of these mechanisms to support the various services that we have proposed.

4.1 Possible Mechanisms

In the packet forwarding path, there is actually a very limited set of actions that a router can take.

Given a particular packet, a router must select a route for it; in addition the router can either

forward it or drop it, and the router may reorder it with respect to other packets waiting to depart.

The router can also hold the packet, even though the link is idle. These are the building blocks

from which we must fashion the desired behavior.
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4.1.1 Packet Scheduling

The basic function of packet scheduling is to reorder the output queue. There are many papers

that have been written on possible ways to manage the output queue, and the resulting behavior.

Perhaps the simplest approach is a priority scheme, in which packets are ordered by priority, and

highest priority packets always leave �rst. This has the e�ect of giving some packets absolute

preference over others; if there are enough of the higher priority packets, the lower priority class

can be completely prevented from being sent.

An alternative scheduling scheme is round-robin or some variant, which gives di�erent classes of

packets access to a share of the link. A variant called Weighted Fair Queueing, or WFQ, has been

demonstrated to allocate the total bandwidth of a link into speci�ed shares.

There are more complex schemes for queue management, most of which involve observing the

service objectives of individual packets, such as delivery deadline, and ordering packets based on

these criteria.

4.1.2 Packet dropping

The controlled dropping of packets is as important as their scheduling.

Most obviously, a router must drop packets when its bu�ers are all full. This fact, however, does

not determine which packet should be dropped. Dropping the arriving packet, while simple, may

cause undesired behavior.

In the context of today's Internet, with TCP operating over best e�ort IP service, dropping a

packet is taken by TCP as a signal of congestion and causes it to reduce its load on the network.

Thus, picking a packet to drop is the same as picking a source to throttle. Without going into any

particular algorithm, this simple relation suggests that some speci�c dropping controls should be

implemented in routers to improve congestion control.

In the context of real-time services, dropping more directly relates to achieving the desired quality

of service. If a queue builds up, dropping one packet reduces the delay of all the packets behind it in

the queue. The loss of one can contribute to the success of many. The problem for the implementor

is to determine when the service objective (the delay bound) is in danger of being violated. One

cannot look at queue length as an indication of how long packets have sat in a queue. If there is a

priority scheme in place, packets of lower priority can be pre-empted inde�nitely, so even a short

queue may have very old packets in it. While actual time stamps could be used to measure holding

time, the complexity may be unacceptable.

Some simple dropping schemes, such as combining all the bu�ers in a single global pool, and

dropping the arriving packet if the pool is full, can defeat the service objective of a WFQ scheduling
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scheme. Thus, dropping and scheduling must be co-ordinated.

4.1.3 Packet classi�cation

The above discussion of scheduling and dropping presumed that the packet had been classi�ed into

some ow or sequence of packets that should be treated in a speci�ed way. A preliminary to this

sort of processing is the classi�cation itself. Today a router looks at the destination address, and

selects a route. Destination address is not su�cient to select the class of service a packet must

receive. More information is needed.

One approach is to abandon the IP datagram model for a virtual circuit model, in which a circuit

is set up with speci�c service attributes, and the packet carries a circuit identi�er. This is the

approach of ATM as well as protocols such as ST-II [ST2-90]. Another model, less hostile to IP,

is to allow the router to look at more �elds in the packet, such as the source address, the protocol

number and the port �elds. Thus, video streams might be recognized by a particular well-known

port �eld in the UDP header, or a particular ow might be recognized by looking at both the source

and destination port numbers. This more complex comparison, in practice, seems to function very

well in sorting packets into classes.

The classi�er implementation issues are complexity and processing overhead. Current experience

suggests that careful implementation of e�cient algorithms can lead to e�cient classi�cation of

IP packets. This result is very important, since it allows us to add QOS support to existing

applications, such as Telnet, which are based on existing IP headers. An intermediate approach,

as advocated in the design of SIP and other IPng proposals, is to provide a ow-id �eld as part of

the IP-like packet header.

4.1.4 Admission Control

As we stated in the introduction, real-time service depends on setting up state in the router and

making commitments to certain classes of packets. In order to insure that these commitments can

be met, it is necessary that resources be explicitly requested, so that the request can be refused if

the resources are not available. The decision about resource availability is called admission control.

Admission control requires that the router understand the demands that are currently being made

on its assets. The approach traditionally proposed is to remember the service parameters of past

requests, and make a computation based on the worst-case bounds on each service. A recent

proposal, which is likely to provide better link utilization, is to program the router to measure the

actual usage by existing packet ows, and to use this measured information as a basis of admitting

new ows [JCSZ92]. This approach is subject to more risk of overload, but may prove much more

e�ective in using bandwidth.
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Note that while the need for admission control is part of the global service model, the details of

the algorithm run in each router is a local matter. Thus, vendors can compete by developing and

marketing better admission control algorithms, which lead to higher link loadings with fewer service

overloads.

4.2 Applying the Mechanisms

The various tools described above can be combined to support the services which were discussed

in section 3.

� Guaranteed delay bounds

A theoretical result by Parekh [Parekh92] shows that if the router implements a WFQ schedul-

ing discipline, and if the nature of the tra�c source can be characterized (e.g. if it �ts within

some bound such as a token bucket) then there will be an absolute upper bound on the

network delay of the tra�c in question. This simple and very powerful result applies not

just to one switch, but to general networks of routers. The result is a constructive one; that

is, Parekh displays a source behavior which leads to the bound, and then shows that this

behavior is the worst possible. This means that the bound he computes is the best there can

be, under these assumptions.

� Link sharing

The same WFQ scheme can provide controlled link sharing. The service objective here is

not to bound delay, but to limit overload shares on a link, while allowing any mix of tra�c

to proceed if there is spare capacity. This use of WFQ is available in commercial routers

today, and is used to segregate tra�c into classes based on such things as protocol type or

application. For example, one can allocate separate shares to TCP, IPX and SNA, and one

can assure that network control tra�c gets a guaranteed share of the link.

� Predictive real-time service

This service is actually more subtle than guaranteed service. Its objective is to give a bound

which is, on the one hand, as low as possible, and on the other hand, stable enough that

the receiver can estimate it. The WFQ mechanism leads to a guaranteed bound, but not

necessarily a low bound. In fact, mixing tra�c into one queue, rather than separating it as

in WFQ, leads to lower bounds, so long as the mixed tra�c is generally similar (e.g., mixing

tra�c from multiple video coders makes sense, mixing video and FTP does not.)

This suggests that we need a two-tier mechanism, in which the �rst tier separates tra�c

which has di�erent service objectives, and the second tier schedules tra�c within each �rst

tier class in order to meet its service objective.
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4.3 An example: The CSZ scheme

As a proof of concept, a code package has been implemented which realizes the services discussed

above. It actually uses a number of the basic tools, combined in a way speci�c to the service needs.

We describe in general terms how it works, to suggest how services can be realized. We stress that

there are other ways of building a router to meet the same service needs, and there are in fact other

implementations being used today.

At the top level, the CSZ code uses priority to separate the classes. Guaranteed service gets the

highest priority, (but only if it needs the access to meets its deadline), then predictive service, and

then best e�ort service. The priority scheme is enhanced to prevent overloads of real-time tra�c

from disrupting other services.

Within the guaranteed service class (the highest �rst-tier class), WFQ is used to provide a separate

guarantee for each class.

Within the predictive service class, a further priority is used to provide sub-classes with di�erent

delay bounds. Inside each predictive sub-class, simple FIFO queueing is used to mix the tra�c,

which seems to produce good overall delay behavior. This works because the top-tier algorithm

has separated out the best e�ort tra�c such as FTP.

Within the best-e�ort class, WFQ is used to provide link sharing. Since there is a possible require-

ment for nested shares, this WFQ code can be used recursively. There are thus two di�erent uses

of WFQ in this code, one to segregate the guaranteed classes, and one to segregate the link shares.

They are similar, but di�er in detail.

Within each link share of the best e�ort class, priority is used to permit more time-sensitive elastic

tra�c to precede other elastic tra�c, e.g., to allow interactive tra�c to precede asynchronous bulk

transfers.

The CSZ code thus uses both priority and WFQ in an alternating manner to build a mechanism

to support a range of rather sophisticated service o�erings. This discussion is very brief, and does

not touch on a number of signi�cant issues, such as how the CSZ code �ts real time tra�c into

the link sharing objectives. But the basic building blocks are very simple, and very powerful. In

particular, while priority has been proposed as a key to real-time services, WFQ may be the more

general and powerful of the two schemes. It, rather than priority, supports guaranteed service and

link sharing.



Expires: April 1994 20

Senders Receivers

_____________________

( ) ===> R1

S1 ===> ( Multicast )

( ) ===> R2

( distribution )

S2 ===> ( )

( ) ===> R3

(_____________________)

Figure 2: Multicast Distribution Session (M-session)

5 RESERVATION SETUP PROTOCOL

There are a number of requirements on a reservation setup protocol. It must be fundamentally

designed for a multicast environment, and must accommodate heterogeneous service needs. It

must give exible control over the manner in which reservations can be shared along branches of

the multicast delivery trees. It should be designed around the elementary action of adding one

sender and/or receiver to an existing set, or deleting one. It must be robust and scale well to

large multicast groups. Finally, it must provide for advance reservation of resources, and for the

preemption that this implies.

The protocol RSVP has been designed to meet these requirements [RSVP93a, RSVP93b]. This

section discusses some of the issues in the design of RSVP.

5.1 RSVP

Figure 2 shows our basic model for multi-destination data distribution for a shared, distributed

application. The arrows indicate data ow from senders S1 and S2 to receivers R1, R2, and R3, and

the cloud represents the distribution mesh created by the multicast routing protocol. Multicasting

distribution replicates each data packet from a sender Si, for delivery to every receiver Rj (whether a

packet actually arrives at Rj depends on the speci�ed QoS and perhaps upon congestion encountered

along the path). We call this multicast distribution mesh an M-session.

In general, an RSVP reservation speci�es the amount of resources to be reserved for all, or some

subset of, the packets in a particular session. The resource quantity is speci�ed by a owspec, which

parametrizes the packet scheduling mechanism [Partridge92]. The packet subset to receive those

resources is speci�ed by a �lter spec. A �lter spec de�nes a packet �lter that is instantiated in the

classi�er.

The RSVP protocol mechanisms provide a very general facility for creating and maintaining dis-
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tributed reservation state across the mesh of multicast delivery paths. These mechanisms treat

owspecs and �lter specs as opaque binary data, simply handing them to the local tra�c control

machinery for interpretation. However, the service model presented to an application must specify

how to encode owspecs and �lter specs.

5.2 Reservation Styles

RSVP models a reservation as two distinct components, a resource allocation and a packet �lter.

The resource allocation speci�es what amount of resources is reserved, while the packet �lter se-

lects which packets can use the resources. This distinction between the reservation and �lter, and

the ability to change the �lter without changing the resource allocation, enables RSVP to o�er

several di�erent reservation styles, which is the manner in which the resource requirements of mul-

tiple receivers are aggregated. These styles allow the resources reserved to more e�ciently meet

application requirements.

RSVP de�nes three reservation styles, wildcard, �xed-�lter, and dynamic-�lter. A wildcard reserva-

tion indicates that a source speci�c �lter is not required, so any packets destined for the associated

multicast group may use the reserved resources; this allows a single resource allocation to be made

across all distribution paths for the group. The wildcard reservation is useful in support of an

audio conference, where at most a small number of sources are active simultaneously and may

share the resource allocation. When a source speci�c �lter is required, a receiver may indicate

whether it desires to receive a �xed set of sources, or instead desires the ability to dynamically

switch its reservation among the sources. A �xed-�lter reservation cannot be changed during its

lifetime without re-invoking setup and admission control; this allows resources to be shared among

multiple reservations for the same source. Dynamic-�lter reservations allow a receiver to modify its

�lter over time; this requires that su�cient resources be allocated to handle the worst case when

all downstream receivers take input from di�erent sources.

5.3 Reservation Setup in RSVP

The reservation setup protocol is used by hosts and routers to create, modify, and delete resource

reservations for individual M-sessions, to support real-time applications. However, an M-session

may equally well carry elastic tra�c with no real-time guarantees; resource reservations are an

added feature.

There are two di�erent possible styles for reservation setup protocols, the "hard state" (HS) ap-

proach (also called "connection-oriented"), and the "soft state" (SS) approach (also called "connec-

tionless"). In both approaches, multicast distribution is performed using ow-speci�c state in each

router along the path. Under the HS approach, this state is created and deleted in a fully deter-

ministic manner by cooperation among the routers. Once a host requests a session, the "network"
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takes responsibility for creating and later destroying the necessary state. ST-II is a good example

of the HS approach [ST2-90]. Since management of HS session state is completely deterministic,

the HS setup protocol must be reliable, with acknowledgments and retransmissions. In order to

achieve deterministic cleanup of state after a failure, there must be some mechanism to detect fail-

ures, i.e., an "up/down" protocol. The router upstream (towards the source) from a failure takes

responsibility for rebuilding the necessary state on the router(s) along an alternate route.

In contrast, the SS approach regards the additional router state to be cached information that is

installed and periodically refreshed by the end hosts; unused state is timed out by the routers.

If the route changes, the refresh messages automatically install the necessary state along the new

route. The SS approach was chosen as the basis for RSVP, to obtain the simplicity and robustness

that have been achieved by connectionless internet-layer protocols such as IP [Clark88].

Another design issue concerns the roles of senders and receivers in the reservation setup. A sender

knows the qualities of the tra�c stream it can send, while a receiver knows what it wants to (or can)

receive. We want to allow heterogeneous sender and receiver streams, so the distributed computa-

tion of resource reservations could require a perhaps complex and many-sided negotiation among

senders and receivers. This negotiation must be performed by some combination of application-level

protocols and the reservation setup protocol. We wish to keep the latter as simply as possible, but

with su�cient generality to handle the great majority of setup situations. This may imply some

engineering judgments on which functions are really important and which are peripheral.

One approach to performing the negotiation in the reservation protocol is a two-pass scheme. In

such a scheme, an \o�ered" owspec is propagated along the multicast distribution tree from

each sender Si to all receivers Rj. Each router along the path records these values and perhaps

adjusts them to reect available capacity. The receivers get these o�ers, generate corresponding

\requested" owspecs, and propagate them back along the same routes to the senders. At each

node, a local reconciliation must be performed between the o�ered and the requested owspec to

create a reservation, and an appropriately modi�ed requested owspec is passed on. This two-pass

scheme allows extensive properties like allowed delay to be distributed across hops in the path

[Tenet90, ST2-90].

RSVP [RSVP93b] uses an even simpler approach, a one-pass setup mechanism in which reservations

are receiver-initiated. A receiver is assumed to learn the senders' o�ered owspecs by a higher-

level mechanism (\out of band"). The receivers then generate and propagate request owspecs

towards the senders, making reservations in each router along the way. This single-pass approach

may be justi�ed by the observation that in practice most of the queueing delay will not be evenly

distributed but will occur at one or a few bottleneck nodes. Furthermore, we do not think it will

often be useful (or perhaps possible) to achieve great precision in resource guarantees.

In order to scale well to large groups, the internet-layer multicasting mechanism must address

datagrams to logical addresses that implicitly name the destination hosts. Any host may send to
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a group, but they must explicitly ask to join a group in order to receive its packets. This receiver

initiation of group membership is consistent with RSVP's use of receiver-initiated reservations.

5.4 Routing and Reservations

There is a fundamental conict between dynamic routing and the necessity to bind resource reser-

vations to the nodes along a particular route. We could force static routing for real-time tra�c, or

we could rebuild the necessary session state on the alternate path when rerouting does occur [ST2-

90]. Static routes for real-time tra�c are unacceptable, since they prevent recovery from failures

of lines or routers. The ability of the Internet level to bypass link-layer failures is a fundamental

property of the Internet architecture that must be retained for integrated services.

When a session is set up, the optimal choice of route may depend upon the resources available

along the possible paths. Thus, we might add resources to the attributes of a link for the purposes

of link-state computation. The available resource levels would be broadcast to all routers, and all

would do an identical resource computation to determine the route.

RSVP does NOT use this general approach. Routing protocols are already reaching the threshold

of feasible complexity, and we do not want to add a signi�cant new burden. Instead, RSVP was

designed to operate on top of any of the current generation of routing protocols and protocol

implementations, without modi�cation. RSVP uses routes determined by a routing computation

that depends only upon the connectivity, independent of the reservation state. This simpli�cation

may occasionally lead to failure to create the best, or even any, real-time session. Thus, in order to

achieve higher reliability and e�ciency, we must �nd ways of increasing the uni�cation of resource

setup with routing. This will be an important area for future research and development and we

foresee the following steps in this e�ort: TOS routing, in which routes are chosen with knowledge

of the type-of-service requested; nailed-down routes, in which routes for real-time ows are �xed

for the duration of the ow unless a failure occurs (this prevents route apping from interfering

with the stability of a ow); and eventually receiver-controlled, adaptive, multicast routing.
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